A Convergent Finite Difference Scheme for the Camassa–Holm Equation with General $H^1$ Initial Data
نویسندگان
چکیده
منابع مشابه
A Convergent Finite Difference Scheme for the Camassa-Holm Equation with General H1 Initial Data
We suggest a finite dfference scheme for the Camassa-Holm equation that can handle general H1 initial data. The form of the difference scheme is judiciously chosen to ensure that it satisfies a total energy inequality. We prove that the difference scheme converges strongly in H1 towards an exact dissipative weak solution of Camassa-Holm equation.
متن کاملA Convergent Finite Difference Scheme for the Camassa-holm Equation with General H Initial Data
We suggest a finite dfference scheme for the Camassa-Holm equation that can handle general H1 initial data. The form of the difference scheme is judiciously chosen to ensure that it satisfies a total energy inequality. We prove that the difference scheme converges strongly in H1 towards an exact dissipative weak solution of Camassa-Holm equation.
متن کاملFinite difference scheme for solving general 3D convection-diffusion equation
The effect of ergodisation (either by additional coils like in TEXTOR-DED or by intrinsic plasma effects like in W7-X) defines the need for transport models being able to describe this properly. A prerequisite for this is the concept of local magnetic coordinates allowing a correct discretization with minimized numerical errors [1]. For these coordinates the full respective metric tensor has to...
متن کاملA Supra-Convergent Finite Difference Scheme for the Variable Coefficient Poisson Equation on Fully Adaptive Grids
We introduce a method for solving the variable coefficient Poisson equation on fully adaptive Cartesian grids that yields second order accuracy for the solutions and their gradients. We employ quadtree (in 2D) and octree (in 3D) data structures as an efficient means to represent the Cartesian grid, allowing for constraint-free grid generation. The schemes take advantage of sampling the solution...
متن کاملA supra-convergent finite difference scheme for the variable coefficient Poisson equation on non-graded grids
We introduce a method for solving the variable coefficient Poisson equation on non-graded Cartesian grids that yields second order accuracy for the solutions and their gradients. We employ quadtree (in 2D) and octree (in 3D) data structures as an efficient means to represent the Cartesian grid, allowing for constraint-free grid generation. The schemes take advantage of sampling the solution at ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Numerical Analysis
سال: 2008
ISSN: 0036-1429,1095-7170
DOI: 10.1137/060673242