A Convergent Finite Difference Scheme for the Camassa–Holm Equation with General $H^1$ Initial Data

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Convergent Finite Difference Scheme for the Camassa-Holm Equation with General H1 Initial Data

We suggest a finite dfference scheme for the Camassa-Holm equation that can handle general H1 initial data. The form of the difference scheme is judiciously chosen to ensure that it satisfies a total energy inequality. We prove that the difference scheme converges strongly in H1 towards an exact dissipative weak solution of Camassa-Holm equation.

متن کامل

A Convergent Finite Difference Scheme for the Camassa-holm Equation with General H Initial Data

We suggest a finite dfference scheme for the Camassa-Holm equation that can handle general H1 initial data. The form of the difference scheme is judiciously chosen to ensure that it satisfies a total energy inequality. We prove that the difference scheme converges strongly in H1 towards an exact dissipative weak solution of Camassa-Holm equation.

متن کامل

Finite difference scheme for solving general 3D convection-diffusion equation

The effect of ergodisation (either by additional coils like in TEXTOR-DED or by intrinsic plasma effects like in W7-X) defines the need for transport models being able to describe this properly. A prerequisite for this is the concept of local magnetic coordinates allowing a correct discretization with minimized numerical errors [1]. For these coordinates the full respective metric tensor has to...

متن کامل

A Supra-Convergent Finite Difference Scheme for the Variable Coefficient Poisson Equation on Fully Adaptive Grids

We introduce a method for solving the variable coefficient Poisson equation on fully adaptive Cartesian grids that yields second order accuracy for the solutions and their gradients. We employ quadtree (in 2D) and octree (in 3D) data structures as an efficient means to represent the Cartesian grid, allowing for constraint-free grid generation. The schemes take advantage of sampling the solution...

متن کامل

A supra-convergent finite difference scheme for the variable coefficient Poisson equation on non-graded grids

We introduce a method for solving the variable coefficient Poisson equation on non-graded Cartesian grids that yields second order accuracy for the solutions and their gradients. We employ quadtree (in 2D) and octree (in 3D) data structures as an efficient means to represent the Cartesian grid, allowing for constraint-free grid generation. The schemes take advantage of sampling the solution at ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Numerical Analysis

سال: 2008

ISSN: 0036-1429,1095-7170

DOI: 10.1137/060673242